$(i)$ રેખા, $(ii)$ પૃષ્ઠ, $(iii)$ કદ પરના વિધુતભારના સતત વિતરણના લીધે કોઈ પણ બિંદુ પાસે ઉદભવતાં વિધુતક્ષેત્રનું સુત્ર મેળવો.
$(i)$ રેખા
ધારોકે, રેખાને $d l$ જેટલી સૂક્ષ્મ લંબાઈના ખંડોમાં વિભાગેલો કલ્પીએ અને તેના પરનો કોઈ એક ખંડનો સ્થાન સદિશ $\vec{r}$ છે રેખા પર રેખીય વિદ્યુતભારની ધનતા $\lambda$ છે તેથી ખંડ પરનો વિદ્યુતભાર $\lambda d l$ છે.
વિદ્યુતભાર વિતરણની અંદર કે બહાર કોઈ એક બિંદુ $P$ લો કે જેનો સ્થાન સદિશ $\vec{R}$ છે.
$\Delta l$ ખંડથી $P$ બિંદુનું અંતર $r^{\prime}$ છે અને $\Delta l$ થી $P$ બિંદુ તરફનો એક્મ સદિશ $\hat r$ છે.
$\lambda \Delta l$ વિદ્યુતભારને લીધે $P$ પાસે કુલંબના નિયમથી વિદ્યુતક્ષેત્ર,
$\overrightarrow{\Delta E }=\frac{k \lambda \Delta l}{\left(r^{\prime}\right)^{2}} \cdot \hat{r}^{\prime}$
સંપાતપણોના સિદ્ધાંત પરથી વિદ્યુતભાર વિતરણના લીધે $P$ પાસે વિદ્યુતક્ષેત્ર,
$\overrightarrow{ E }=\sum_{\Delta l} \frac{k \lambda \Delta l}{\left(r^{\prime}\right)^{2}} \cdot \hat{r}^{\prime}$
આ સરવાળાને સંકલન સ્વરૂપે લખતાં,
$\overrightarrow{ E }=\int_{l} \frac{k \lambda d l}{\left(r^{\prime}\right)^{2}} \hat{r}^{\prime}$
$(ii)$ પૃષ્ઠ
ધારોકે, પૃષ્ઠને $\Delta S$ જેટલા સૂક્ષ્મ ક્ષેત્રફળના પૃષ્ઠખંડોમાં વિભાગેલો કલ્પો અને તેના પરના કોઈ એક પૃષ્ઠખંડનો સ્થાન સદિશ $\vec{r}$ છે.
પૃષ્ઠ પર પૃષ્ઠ વિદ્યુતભારની ધનતા $\sigma$ છે તેથી $\Delta S$ પૃષ્ઠખંડ પરનો વિદ્યુતભાર $=\sigma \Delta S$ છે.
પૃષ્ઠ વિદ્યુતભાર વિતરણની અંદર કે બહાર કોઈ એક બિંદુ લો કે જેનો સ્થાન સદિશ $\overrightarrow{ R }$ છે અને રેખા પરના $\Delta S$ ખંડથી $P$ નું અંતર $r$ ' છે અને તે પૃષ્ઠ ખંડ $\Delta S$ થી $P$ તરફનો એકમ સદિશ $\hat{r}^{\prime}$ છે.
$\sigma$ $\Delta S$ વિદ્યુતભારના લીધે $P$ પાસે કુલંબના નિયમની મદદથી વિદ્યુતક્ષેત્ર,
$\overrightarrow{\Delta E }=\frac{k \sigma \Delta S }{\left(r^{\prime}\right)^{2}} \cdot \hat{r}^{\prime}$
સંપાતપણાના સિદ્ધાંત પરથી વિદ્યુતભાર વિતરણના લીધે પાસે $P$ કુલ વિદ્યુતક્ષેત્ર,
$\overrightarrow{ E }=\sum_{ S } \frac{k \sigma \Delta S }{\left(r^{\prime}\right)^{2}} \hat{r}^{\prime}$
આ સરવાળને સંકલનની રીતે લખતાં,
$\overrightarrow{ E }=\int_{ S } \frac{k \sigma \Delta S }{\left(r^{\prime}\right)^{2}} \hat{r}^{\prime}$
$(iii)$ કદ
ધારો કે, અવકાશમાં સતત વિદ્યુતભાર વિતરણાની વિદ્યુતભાર ધનતા $\rho$ છે. વિદ્યુતભાર વિતરણને $\Delta V$ માપનના નાના કદ ખંડોમાં વિભાજિત કરો.
ઊગમબિંદુ $O$ ની સાપેક્ષે વિદ્યુતભાર વિતરણમાં કોઈ એક કદ ખંડનો સ્થાન સદિશ $\vec{r}$ છે. તેથી આ કદ ખંડમાં રહેલો વિદ્યુતભાર $=\rho \Delta V$.
વિદ્યુતભાર વિતરણની અંદર કે બહાર કોઈ એક બિંદુ $P$ લો. કે જેનો સ્થાન સદિશ $\vec{R}$ છે. $\rho \Delta V$ વિદ્યુતભારને લીધે $P$ પાસે કુલંબના નિયમ પરથી વિદ્યુતક્ષેત્ર,
$\overrightarrow{\Delta E }=\frac{k \rho \Delta V }{\left(r^{\prime}\right)^{2}} \cdot \hat{r}^{\prime}$
જ્યાં $r^{\prime}$ એ વિદ્યુતભાર કદ ખંડ અને $P$ વચ્ચેનું અંતર છે તથા તે કદ ખંડથી $P$ તરફનો એકમ સદિશ પણ છે. સંપાતપણાના સિદ્ધાંત પરથી વિદ્યુતભાર વિતરણને લીધે $P$ પાસે કુલ વિદ્યુતક્ષેત્ર,
$\overrightarrow{ E }=\sum \frac{k \rho \Delta V }{\left(r^{\prime}\right)^{2}} \cdot \hat{r}^{\prime}$
આ સરવાળાને સંકલનથી દર્શાવતાં,
$\overrightarrow{ E }=\int_{ V } \frac{k \rho \Delta V }{\left(r^{\prime}\right)^{2}} \hat{r}^{\prime}$
આમ,કુલંબનો નિયમ અને સંપાતપણાનો સિદ્ધાંત વાપરીને અલગ અલગ અથવા સતત અથવા અંશત: અલગ અને અંશત: સતત એવા કોઈ પણ વિદ્યુતભાર વિતરણ માટે વિદ્યુતક્ષેત્ર મેળવી શકાય છે.
$10\; cm$ ત્રિજ્યાના એક વાહક ગોળા પર અજ્ઞાત વિદ્યુતભાર છે. ગોળાના કેન્દ્રથી $20\; cm$ દૂરના બિંદુએ વિદ્યુતક્ષેત્ર $-1.5 \times 10^{3} \;N / C$ ત્રિજ્યાવર્તી દિશામાં અંદરની તરફ હોય તો ગોળા પરનો કુલ વિદ્યુતભાર કેટલો હશે?
$(a)$ દર્શાવો કે સ્થિરવિધુતક્ષેત્રના લંબ ઘટકનું, વિધુતભારિત સપાટીની એકબાજુથી બીજી બાજુ સુધી અસતતપણું
$\left( E _{2}- E _{1}\right) \cdot \hat{ n }=\frac{\sigma}{\varepsilon_{0}}$
દ્વારા અપાય છે. જ્યાં, ${\hat n}$ તે બિંદુએ સપાટીને લંબ એકમ સદિશ છે. $\sigma $ તે બિંદુએ વિધુતભારની પૃષ્ઠ ઘનતા છે. ( ${\hat n}$ ની દિશા બાજુ $1$ થી $2$ બાજુ તરફ છે. ) આ પરથી દર્શવો કે સુવાહકની તરત બહાર વિધુતક્ષેત્ર ${\sigma \hat n/{\varepsilon _0}}$ છે.
$(b)$ દર્શાવો કે સ્થિતવિદ્યુત ક્ષેત્રનો સ્પર્શીય $(Tangential)$ ઘટક, વિદ્યુતભારિત સપાટીની એક બાજુથી બીજી બાજુ સુધી સતત હોય છે. [ સૂચનઃ $(a)$ માટે ગોસના નિયમનો ઉપયોગ કરો. $(b)$ માટે સ્થિત વિદ્યુત ક્ષેત્ર વડે બંધ ગાળા પર કરેલું કાર્ય શૂન્ય છે તે હકીકતનો ઉપયોગ કરો. ]
અનંત લંબાઈના અને વિધુતભારની રેખીય ઘનતા વાળા સુરેખ તારથી ઉદ્ભવતા વિધુતક્ષેત્રનું સૂત્ર મેળવો.
આકૃતિમાં દર્શાવ્યા પ્રમાણે બે બિંદુવત વિજભાર $+Q$ અને $-Q$ ને એક ગોળીય કવચની બખોલમાં મૂકેલા છે. વિજભારને બખોલની સપાટીની નજીક અને કેન્દ્રથી વિરુદ્ધ દિશામાં મૂકેલા છે. જો $\sigma _1$ એ અંદરની સપાટી પૃષ્ઠ વિજભારઘનતા અને $Q_1$ તેના પર રહેલો કુલ વિજભાર અને $\sigma _2$ એ બહારની સપાટીની પૃષ્ઠ વિજભારઘનતા અને $Q_2$ તેના પર રહેલો કુલ વિજભાર હોય તો ...
$q$ વિદ્યુતભાર સાથે $r\, (r < R)$ ના વિદ્યુતભારીત ગોળીય વાહકના કેન્દ્રથી $r$ (અંતરે $R$) આવેલા બિંદુ આગળ વિદ્યુતક્ષેત્રની તીવ્રતા ....... હશે.